Competing ultrafast energy relaxation pathways in photoexcited graphene.

نویسندگان

  • S A Jensen
  • Z Mics
  • I Ivanov
  • H S Varol
  • D Turchinovich
  • F H L Koppens
  • M Bonn
  • K J Tielrooij
چکیده

For most optoelectronic applications of graphene, a thorough understanding of the processes that govern energy relaxation of photoexcited carriers is essential. The ultrafast energy relaxation in graphene occurs through two competing pathways: carrier-carrier scattering, creating an elevated carrier temperature, and optical phonon emission. At present, it is not clear what determines the dominating relaxation pathway. Here we reach a unifying picture of the ultrafast energy relaxation by investigating the terahertz photoconductivity, while varying the Fermi energy, photon energy and fluence over a wide range. We find that sufficiently low fluence (≲4 μJ/cm(2)) in conjunction with sufficiently high Fermi energy (≳0.1 eV) gives rise to energy relaxation that is dominated by carrier-carrier scattering, which leads to efficient carrier heating. Upon increasing the fluence or decreasing the Fermi energy, the carrier heating efficiency decreases, presumably due to energy relaxation that becomes increasingly dominated by phonon emission. Carrier heating through carrier-carrier scattering accounts for the negative photoconductivity for doped graphene observed at terahertz frequencies. We present a simple model that reproduces the data for a wide range of Fermi levels and excitation energies and allows us to qualitatively assess how the branching ratio between the two distinct relaxation pathways depends on excitation fluence and Fermi energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microscopic view on the ultrafast photoluminescence from photoexcited graphene.

We present a joint theory-experiment study on ultrafast photoluminescence from photoexcited graphene. On the basis of a microscopic theory, we reveal two distinct mechanisms behind the occurring photoluminescence: besides the well-known incoherent contribution driven by nonequilibrium carrier occupations, we found a coherent part that spectrally shifts with the excitation energy. In our experim...

متن کامل

Femtosecond photoexcited carrier dynamics in reduced graphene oxide suspensions and films

We report ultrafast response of femtosecond photoexcited carriers in single layer reduced graphene oxide flakes suspended in water as well as few layer thick film deposited on indium tin oxide coated glass plate using pump-probe differential transmission spectroscopy at 790 nm. The carrier relaxation dynamics has three components: ~200 fs, 1 to 2 ps, and ~ 25 ps, all of them independent of pump...

متن کامل

Transient charge and energy balance in graphene induced by ultrafast photoexcitation.

Ultrafast optical pump-probe spectroscopy measurements on monolayer graphene reveal significant optical nonlinearities. We show that strongly photoexcited graphene monolayers with 35 fs pulses quasi-instantaneously build up a broadband, inverted Dirac-fermion population. Optical gain emerges and directly manifests itself via a negative conductivity at the near-infrared region for the first 200 ...

متن کامل

Relaxation dynamics of photoexcited resorcinol: internal conversion versus H atom tunnelling.

The excited state dynamics of resorcinol (1,3-dihydroxybenzene) following UV excitation at a range of pump wavelengths, 278 ≥ λ ≥ 255 nm, have been investigated using a combination of time-resolved velocity map ion imaging and ultrafast time-resolved ion yield measurements coupled with complementary ab initio calculations. After excitation to the 1(1)ππ* state we extract a timescale, τ1, for ex...

متن کامل

Nonequilibrium plasmon emission drives ultrafast carrier relaxation dynamics in photoexcited graphene

J. M. Hamm,1,* A. F. Page,1 J. Bravo-Abad,2 F. J. Garcia-Vidal,2,3 and O. Hess1,† 1Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom 2Departamento de Fı́sica Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain 3Donostia International Physics Center (DIPC), E-20018 Do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 14 10  شماره 

صفحات  -

تاریخ انتشار 2014